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ABSTRACT

An approximate analysis of the response in the funda-
mental mode of any simple single span beam with tuned visco-
elastic dampers attached at discrete locations to a harmonic
loading with arbitrary spatial distribution is derived. It
is shown that, to a good degree of approximation, a single
expression can be made to represent the response in the funda-
mental mode of a beam with any boundary conditions, provided
that certain effective mass and stiffness parameters are
defined for the beam-damper configuration. Comparisons are
made with experiments and with an exact theory, subject to
the limitations of the Euler-Bernoulli beam equation, of the
response and damping of a cantilever beam having an isolated
harmonically varying load at the free end and a clamped-
clamped beam, with a tuned damper at the center, under shaker
excitation. Good agreement between the exact and approximate
theories and the experiments is demonstrated. Conclusions are
drawn concerning the equivalent damping introduced into the
simple structure by the tuned dampers and the damper natural
frequency needed for optimal damping.

This abstract is subject to special export controls and
each transmittal to foreign governments or foreign nationals
may be made only with prior approval of the Metals and Ceramics
Division (MAM), Air Force Materials Laboratory, Wright-Patter-
son Air Force Base, Ohio 45433,
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I. INTRODUCTION

The tuned damper, consisting of a spring-dashpot combina=-
tion (or a viscoelastic spring) connecting a mass to a point
on a vibrating structure, has recently been examined from the
point of view of a possible application to the damping of com=-
plex structures exhibiting closely spaced resonant frequen=-
cies [1l, 2]. Since analysis is usually difficult in such
cases investigations of the effect of tuned dampers on the
response of simpler structures have served as essential prelim-
inaries. Such analyses have been carried out by Snowdon [3]
and others [4-7].

However, although exact solutions within the framework
of the Euler-Bernoulli equation have been obtained for several
beam-damper configurations, under various harmonic loadings, no
attempt has apparently been made to derive a general theory,
applicable equally to all simple beam structures and harmonic
loadings. Such a theory is developed in this paper. An approx-
imate theory, applicable for the fundamental mode primarily, is
obtained for a simple beam with tuned dampers at various points
and subjected (i) to a harmonic loading of arbitrary spatial
dependence and (ii) to displacement (shaker) excitation at the
support(s). It is shown that a single expression can be made
to represent the transmissibility for all boundary conditions.
Comparisons are made with exact solutions obtained for a
cantilever beam, harmonically loaded by a force at the free end,
and with a tuned damper at the free end [4] and for a clamped-
clampad beam with a tuned damper at the center, subjected to
displacemsnt (shaker) excitation at the supports [5]. The exact
and approximate theories are shown to be in good agreement.

Experimental investigations of cantilever and clamped-
clamped beams, with an isolated tuned damper at the free end
and at the center respectively, are described. It is shown that
the main conclusions of the various theories are borne out.



II. APPROXIMATE ANALYSIS OF TUNED DAMPERS ON SINGLE SPAN
BEAM UNDER FORCE EXCITATION

Consider a single span beam of length L with tuned visco-
elastic dampers of complex spring stiffness k(l+in) and mass m
at a number of points x = x, (j = 1 to J) as in Figure 1. The

amplitude of the harmonic force transmitted back to the
structure (F.) by the damper at the point x. is readily obtained
[4, 5] by solving the equation of motion of the mass m for

the damper subjected to a harmonic input displacement of ampli-
tude W(xj) at the point of attachment to the beam. Then:

- mw? W(x.)8(x - x.)
. = =] %) (1)
. 1 - me? / k(1 + in)

The Euler-Bernoulli equation for the beam under the action of a
harmonic loading of amplitude P(x) is therefore written:

mw 4

J

) W(x.)8(x-x.) = P(x)

: 5 j j

1-mw?/k (1+in) j=1 (2)

EI (d*wW/dx") - pw?w -

If W(x) and P(x) are now expanded as series of normal modes of
the undamped beam, assumed to be known, then these modes must
satisfy the homogeneous equation of motion;

d“¢n(x)/dx“ - (uwg/EI) s.(x} = 0 (3)

If use is made of this fact, equation (2) may be written:

o 9 J ©o
o (nw? - ww?)W_ o (x/L) - L ) 8(x-x.) YW o (x./L)
n£1 " non l-mw?/k(14in) 4=1 =M J

= nzlpn ¢n(x/L) (4)
where W(x) = ) W_ o_(x/L) (5)
n=1 -
and P (x) = ) P o (x/L) (6)
n=1



If we now factor all the terms of equation (4) by @n(x/L) and
integrate with respect to x from 0 to L, then:

L L
(uwg - uw2)wn J @ﬁ(x/L)dx =0 J Qg(x/L)dx

0 0

2
m w

1-mw?/k (1+in) 3

1
| 0

2, (x4/L) 21 W op (x4/L) = 0 (7)

1 m=

use being made of the orthogonal property of the normal modes
i.e.

L
L)¢m(x/L) ¢ (x/L)dx = 0 (m # n) (8)

In this particular investigation, one is interested primarily
in the response in the vicinity of the fundamental mode of
the beam, for which n = 1, Therefore:

PlL“/EI
w = (9)

wa“_ilél(Aj) Zl(wm/wl)¢m(Aj)
EH_E'-I'_ )i m=
1

1
[1-9&*/T (1+in)] J ¢i(A)dA
0

It is clear from equation (7) that, since for any simple beam

m% >> mi (n>1), W, #< W, in the vicinity of the first resonant

frequencies of the beam-damper system. Therefore only the first

term in the series with respect to m in equation (9) need be
retained so that, at the point of maximum amplitude where ¢l=1,

N
o S
by v (E/E "
.o 1 - (g/g)" - s =

(10)

1=y (E/E) /T (1+in)



where y is an effective mass parameter defined by

5l 1
v.oo=v ) 92(a.) / J 62 (A)daA (11)
e =1 1R~ 0 1
J 1
and Tg =T ) o2(ay) / J 02 (8)da fl2)
j=1 B 0

is an effective stiffness parameter. It has therefore been
shown that the theory of the response of any simple beam, for
which the resonant frequencies are sufficiently well separated
for certain approximations to be made, can be reduced to a
single expression if appropriate effective mass and stiffness
parameters are defined for each particular set of boundary
conditions. Certainly, the integrals and summations in equa-
tions (11) and (12) are readily evaluated for most cases using
the tables of normal modes given by Bishop and Johnson [8].
Some of the integrals and summations are given in Table A for
a number of boundary conditions.

It will be seen that equation (10) is the same as that
obtained if one had assumed that the beam was uniformly covered
by a distribution of tuned dampers with the effective mass
parameter u_ now representing the true mass ratio for the dis-
tributed dampers i.e. the ratioc of the total mass of the
dampers to the total mass of the beam [9]. This is apparent
from equation (11l) when g approaches infinity. Similarly, T
is seen to be equal to L3/EIt} times the total stiffness of
all the damper springs in parallel. The theory of the beam
with distributed tuned dampers has already been developed [9, 10],

On the basis of equation (10), the amplitude |[W| of the
response can readily be determined for various specific values
of Voo I and n as a function of E/El or (5/61)2. Typical

oraphs of (EIEi/PlL“) |Ww| are plotted against (E/El)z, which is

proportional to the frequency w, in Figures 2 and 3. Further
data and graphs are available [9] for other values of n.

From the response spectra which have essentially two
resonant peaks, a measure of the performance of the dampers
in damping the beam is given by an arbitrarily defined effec-
tive loss factor n_, defined by ng = (02-1)-1/2 , where Q is

the amplification factor of each resonant peak. Computed
values of Q at resonance are given in TablelIl. Typical graphs
of n_ against the effective stiffness parameter T _are plotted
in Figure 4 for the high and low frequency resonant peaks.
Further data for other values of we are available [9].



At the point where the twc resonance peaks are of equal
amplitude, the dampers are said to be optimally tuned [3, 6].
This is the point at which the curves of n_ against I' cross
over in Figure 4, At all other values of ®p , one or other
of the two resonance peaks will have a highe% amplification
factor Q than at the point of optimal tuning. Typical graphs
of the value of n_ for optimally tuned dampers are plotted in
Figure 5 against “the parameter Voo The data is taken from
Table [1I, where values of g and r, are given for various Va

and n for both the exact theory (discussed later) and the
present approximate theory. These tabulated values are taken
from graphs such as Figure 4., A cross plot of the data given
in Figure 5 gives n_ as a function of n for various y_, and
this data is plottea in Figure 6. B

The values of I'  at which the dampers are optimally
tuned are also of grgat interest since, from the definition
of T 3

e

¥4

J
rg = (kL"/EIQi) z ¢§’[(Aj) P J@i(A)dA
j=1 0
= (up/ug) v,
wp/uy = (T /v )b (13)

It is, therefore, a simple matter to determine the ratio of
the natural frequency . of the damper to the natural fre-

quency w, of the undamped beam from the values of L at the
point of optimal tuning. A typical graph of wD/wl against

we is shown in Figure 7. Of more interest, however, is the
graph of (wD/ml)(l+we)1/2(l+n2)1/“, for the exact and approx-

imate theories, against y_ plotted for several values of the
damper loss factor n in eFigure 8. This empirically derived
representation collapses all the data on to a single straight
line so that the relationship between wD/wl and Ve and n is:

wp/wy = (1+¢e)-1/2 (14+n2) =i/ (14)

Equation (14) implies that, if y_ and n are known, it is pos-
sible to determine the natural frequency w_, of the damper
such that the beam-damper system is optimally damped. This
simple relationship should therefore be of value for simple
systems exhibiting widely separated resonance frequencies and
may serve as a guide for more complex structures to which it
is desired to attach tuned viscoelastic dampers (See [2]).



III, APPROXIMATE ANALYSIS OF TUNED DAMPERS ON SINGLE SPAN
BEAM UNDER SHAKER EXCITATION

If U is the amplitude of transverse displacement of
any point x of the beam relative to the clamped end or ends
(the analysis must clearly be limited to cases where at
least one end of the beam is attached to the shaker), the
equation of motion may be written:

EI (d%U/dx"*) = pw? [U+X]

2 J
- e J o O[U(x,)+X]8(x=-x,) = O
l-mw? / k(1+in) 3j=1 J ]
(15)
which may also be written:
mw?2 J
EI (d%U/dx"*)-uw?U - = ) U(x.) 8 (x-x.)
1-mw?2 / k(1l+in) 3=1 J ]
: 2 J
= pelX + L ) 8 (x-x,) (16)
l-mw? / k(l+in)  j=1 ]

This equation is clearly different from equation (2) but may
be solved in much the same way. Again, we replace the
response U(x) by the appropriate expansion in normal modes.
Then:

U(x) =
n

U, ¢, (x/L) (17)

I~ 38

1 8

and, using equation (3) which applies equally to this case,
equation (16) becomes:



J

) o 2L'+/EI @
(E4=gh) U_¢_(x/L) - L U o_(x./L) ) 6(x-x.)
- n£l S l1-mw?2 / k(l+in) mzl L jzl J
; mw?L4/EI =
= EYX + '} 6(x-xj) (18)

l-mw? / k(l+in) 3j=1

If we factor both sides of equation (18) by ¢ _(x/L), integrate
from 0 to L with respect to x and make use of orthogonal property

of the normal modes:

©

bog i l ve! 7 g
(E!=E*)U J ¢_(a)da - U o (A.) ®_(A.)
. < 1-ypEY / T(l+in) me1 ™™ I 421 7 3
1 " J
= £YX J o (a)da + ve } e (A (19)
0 1-yE* / T (l+in) j=1 % 3

Considering the first mode only, therefore:

o J -5
ver ) oy (Aj)m£1 (Un/Up) 2p (25)

= b j=1
Up pog =5 T
[l=-yg"/T (1+in)] J ¢i (a)da
0
w L L J
£ Jo ¢, (a)da VE _Z ¢1(Aj)
a X # 2= (20)
. 2 pE™ $ 2
jo q)l(A)dA l"m JO @l(A)dA

and, since Un £ig Ul in the neighborhood of the fundamental

frequency, we may write as an approximation:



v(E/E) "8

L
v, (8/81) e *+ 1.y (g/e ) /T (1+in)
- V(E/E) My
. 1 - (g/8))"- D —
1"‘Pe(5/51)/fe(l+ln)
4 - U ;
I . S a+8 (£/8)) "/ {1-v(E/E)) "/ r(1+in) ]
X X Ul To(e/e ) *=yw (678 ) 4/ [1-4 (8/81) */T (1+in)]
(21)
1 1
where a = I ol(A)¢A / j @% (a)da (22)
0 0
J :
and B = jil ¢1(Aj) r jo ¢Z (Aj)dA (23)
8 1
and y = ) @i(Aj) 4 { 4>i(A)dA (24)
j=1 0

It is seen that the response is now governed by two additional
parameters, namely a and 8., In the special case where J»=,

i.e. the dampers are uniformly distributed, o+8. Also, for

J=1 and ¢1(Aj)=l, i.e. the case where the single damper location

and the point at which the mode shape is normalized are identi-
cal, then B=y also. This particular case is of some importance
and analysis will be limited to this case. If 8=y, therefore:



o [-LJH G+‘Pe(§/61)‘+/[l"¢e(€/al)M/I.e(l+in)]
1-(6/6,) *=v_ (£/6,) /1=y _(£/E)* /T _(L1+in) ]

1+ (/€)% (a-1) (25)

Ve (E/E)"

1= (8/87)" =
‘ 1=y (£/81) %/ T (1+in)

In this particularly simple case, therefore, the problem of
determining |W/X| under shaker excitation reduces to that of
factoring the response under force excitation, given in equa-
tion (10) by l+(£/£1)“(a-l). For the response determined in
this way, two peaks are again observed and it has been shown
[4, 5] that, for shaker excitation, the effective loss factor
Ng is defined by the relationship:

a ¢, (A)
_ I
Ny ™= (26)
ya2-1

where A is the amplification factor i.e. the value of |W/X|
at each resonance in the fundamental modes. Values of the
amplification factor A under shaker excitation are given in
Table II for a clamped-clamped beam along with values of Q
for Force excitation. Typical graphs of , 98 defined as in

equation 25, against [ are shown in Figure 9. From these
q g e

graphs, the optimum loss factcr corresponding to the point
of cross-over, can te read off and plotted against Ve for

values of n. The points are plotted in Figure 5 and show
that the variation of B with Ve is practically independent

of whether the beam is force or shaker excited.

On the other hand, graphs of (Fe/we)1/2(1+¢e)+1/2(1+n2)+1/“

and wD/w = (T /q)e)l/2 against we do show some differences,
as figur%s 10 $nd®11 show.



IV. COMPARISON OF EXACT AND APPROXIMATE ANALYSES

(i) cCantilever beam under force excitation

Previous investigations of tuned dampers on simple beams
have led to exact solutions of the Euler-Bernoulli Equation
for a beam with a tuned damper at an antinodal point. For
example, the response of a cantilever beam with a tuned damper
at the free end is described by Young [11l] and Nashif [4].
Graphs of (EI/PL") |W| against £ for a load of amplitude P at
the free end were obtained from the exact theory [4] and were
shown to consist of two resonance peaks in the vicinity of the
fundamental mode, as in the approximate theory. Graphs of n
against I were drawn as for the approximate theory and some
of the results are tabulated in Table III for the optimally
tuned case where the two resonance peaks are of equal amplitude.
Since only one damper was considered for the exact theory [5]

J
of the cantilever beam, ) ¢§(Aj) = 1 and, as in Table I,

(21
;) J
IO @i(A)dA = 0.25. Therefore, for this case, we = 4y and
Pe = 4T, From the values of I' and ¢ [4] therefore, Fe and we
were derived and the values of g plotted against ¥ in Figure
5. It is seen that the computed points lie essentially along
the same line as given by the approximate theory.

Furthermore, the values of (wD/ml)(l+we)1/2(l+n2)1/“,
when plottea against we’ lie on the same straight line as

given by the approximate theory, as in Figure 8.

(ii) Clamped-clamped beam under shaker excitation

A previous investigation [5] has given the exact theory
of a tuned damper at the center of a clamped-clamped beam on
the response under shaker excitation. Some of the results

J
are tabulated in Tables II and IV, Again ) @i(Aj) = 1 and,
1 j=1
as in Table I, J ¢i(A)dA = 0,439, Thus, for this case,
0
¢e = 2,086y and Fe = 2.086T. From the values of T and vy [5],
re and we were deduced and entered into Table V and graphs of

ng plotted against Yor as in Figure 5. It is seen that the
computed points lie along the same curve as all the others.

10



Values of up/w) and (T/y&}) /2 (1+y ) 1/2 (14n2) 1/ when
plotted against Var lie along the same line as given by the
approximate theory in Figures 10 and 11 respectively,

1l



IV, EXPERIMENTAL VERIFICATION

(i) Cantilever beam with distributed tuned dampers under
shaker excitation

This investigation has previously been reported in
reference [9]. 1In brief, a cantilever beam with eleven
tuned dampers of the geometry shown in Figure 12 was vibrated
by an electrodynamic shaker., An accelerometer at the tip
was used to measure the response and the effective damping
deduced from the appropriate relationship, namely B - 1//a7-T,

The length of the beam was varied so as to obtain proper
tuning, i.e. to make the two response peaks, corresponding to
the fundamental mode of equal amplitude, The loss factor

of each damper was determined as in [9] and plotted in Figure
13, Comparison of the measured values of n_ for n = 0,175
and 0,09 and various values of v, are shown™ in Figure 14,

It is seen that the agreement between theory and experi-
ment is good,

Another part of the investigation, not previously reported,
involved the verification of the relationship given in equation
(14) for the point of optimum tuning. The geometry of the
dampers used in this investigation is shown in Figure 15 A. The
density of the aluminum was 0.101 Lb/in3 and that of the visco-
elastic material (LD-400) was 0,0522 Lb/in3, The total weight
of the resilient part of the damper up to the last half inch
in which the tip mass is situated is:

m 0;5 x 1 % 0,02 x 0:;101 x 454

D
+ 10,0522 % 10,5 X 0,75 %X T X 454

0.459 + 8,83t gms

where 1 is the thickness of the viscoelastic material in inches
and the damper breadth is 0,5 inches. Now an additional mass
equal to the weight of the outermost half inch of the damper
beam must be included., This amounts to 0,5 x 0,5 x 0,02 x 0,101
x 454 x 0,23 gms., The total effective mass to be added to the
nominal mass m_ at the free end in order to give the true mass

can be shown 5 from [4] to be

m = mt + 0,23 + 0,236 mD gms

m, + 0,338 + 2,08t gms

w.m!/2 should depend only on t/h. for this particular geometry
of damper., Tests were carried out for these dampers, with

12



various masses m, at the free end under shaker excitation., ~2n
accelerometer was placed at the free end and formed part of
the mass m,. Response spectra showing the variation of the
acceleratiSn at the free end with frequency for several input
accelerations at the clamped end were measured and the fre-
quency at which the output acceleration was greatest noted.
Some typical results are shown in Table V. Further tests, in
which the response at the tip was measured optically were also
carried out, and the resylts are given in Table VI. rrom these
results, a graph of w.m!/? against t/hy was plotted as in
Figure 16. It is seen that the data do incdeed collapse on te
a single curve.

Since optimal tuning was obtained by varying the length
of the beam until the two response peaks corresponding to the
fundamental mode were of equal amplitude, the fundamental
natural frequency of the cantilever bear with nco dampers (but
with the bolts used to hold the clamps in place) was measured
on the shaker and plotted acgainst the beam length L, as in
Figure 17,

Table 1 of reference [9] gives the experimental data ob-
tained for the clamped-free beam with eleven distributed
dampers under shaker excitatiocn. From the values of L for
optimal tuning, w, can be read off Figure 16 and from the

values of m, (reférred to as "m" in Table 1 efere [91)
we can deduSe wye Ilence (wp/wy) Y1+¥ (1+n2)1/% can be calcu-

lated for the point of optimum tuning. This calculation is
carried out in Table VII.The values of (wj/w;) Y14y, (1+n2) 1/%
are plotted against Ve in Figure 18,

(ii) Cantilever beam with tunec¢ cdamper at frece end uncer
shaker excitaticn

This investigation has previously been reported in
reference [4]. 1In this experimental investigation, the
effective damping of the setup shown in TFigure 19 was deter-
mined from the experimental amplification factor A under
shaker excitation by means of the relationship given in
Equation 26. The damper configuration used is shown in Figure 15B,
The length of the beam was varied so as to obtain proper tuning
in the fundamental mode, For the point of optimum damping,
graphs of the optimum n_ against y were plotted, as in refer-
ence [4]. These graphsare re-plotted as graphs of ng against
by for n = 0.22 and n = 0,8 in Figures 20 and 21 respectively.
Tt is seen that the agreement between theory and experiment is
satisfactory. The loss factor n of each damper was determined
as in [4] and is plotted against -r/hD in Figure 22,

13



Measurements of the natural frequencies of the dampers
for various tip masses m, were again made, The value of N
is, now

3
|

= 0,5 x 1 x 0,02 x 0,101 x 454

+

0.0522 x 0,5 x 1 x v x 454
+ 0,459 + 11.81 gms
where 1 is again the viscoelastic material thickness in inches.,

mt + 0,23 + 0,236 m

5
]

D

=m, + 0.338 + 2,78t gms

as for the dampers used for the beam with distributed tuned
dampers (case A). Again, graphs of w m!/2 against 1/hp were

plotted on the basis of measured valuBs of w. for various My e
This data is given in Table VIII. It is seen tRat the pcints

on the graph of w ml/23gainst r/hD in Figure 16 lie along the
same line as for Bhe dampers in case A, as would be expected.
The small additional amount of viscoelastic material near

the root of the cantilever damper contributes greatly tc the

damping but not to the damped natural frequency.

From Table 4 of Reference [4], the values of the test
heam length L are obtained for the point of optimal tuning.
A graph of w, against L was obtained experimentally for the
beam with a "mass of 22 gms at the free end, and plotted in
Figure 23, This mass represented the metal stamp used to
ensure proper attachment of the cantilever_ damper at the free
end of the test beam. Values of (wj/w,) v 1+y (1+n2) 1/"* were
then obtained from the test data, as in Table®IX, and plotted
against Y in Figure 18,

(iii) Clamped=-clamped beam with tuned damper at center
under shaker excitation

This investigation has previously been reported in
reference [5]. In this experimental investigation the effec-
tive damping was determined from the observed resonance ampli-
fication factor by the relationship n_ = 1.32(n%-1)-1/2,

This setup is illustrated in Figure24i25 . The beam lenagth
was noW fixed at 19.9 inches, with a fundamental frequency
of 90 cps. Craphs of L1 against the mass ratio V¥ for several

14



values of n are given in reference [5] and are re-drawn as
graphs of B against we (= 2.5¢) in Figures 20 and 21, for

n = 0.22 and 0.8 respectively. It is seen that the collapsed
data is in good agreement with the theory and with the data
for the cantilever bean.

The damper used in this investigation is illustrated
in Figure 15C, Measurements of the loss factors and natural
frequencies of the dampers were again made, The loss factor
measurements are plotted in Figure 22, The value of mny is
now:

0,101 x 1 x 0,063 x 454 ¢

3
I

D

+ 0,0522 x 1 x 2. x 1T X 454

D
(2.83 + 23.21)2D gms

where 1t is the thickness of the viscoelastic material in inches,

2 is the damper length in inches, the damper breadth is 1 inch.

Graphs of me1/2 2D3/2 were again plotted against r/hD, on the

basis of measured values of w_, in Figure 26. This data is given
in Table X. Tre data for &_ = 2.2 inches, 2,7 inches and 3.7
inches all fall on the same curve.,

From Table 2 of Reference [5], the values of the damper
mass m, needed for oYtimal tuning are taken and values of
(wD/wlf VI+v_ (1+n2)1/% calculated as in Table XI. The data
is ' plotted iR Figure 18,
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VI. CONCLUSIONS

A close approximation to the response of a single span
beam with any boundary conditions, having isclated tuned
viscoelastic dampers at arbitrary lccaticns, under the action
of any harmonically varying loading has been derived. Effec-
tive mass and stiffness parameters, and a system loss factor
are defined. Ccmparisons are made with an exact thecry of the
response and damping of a clamped cantilever beam with a single
tuned damper and an isolated harmonic force at the free end
and a clamped-clamped, beam under shaker excitation, with a
tuned damper at the center,
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STANIDARD INTLEGRALS

TALLE 1

TOR VARIOUS BEAM CONFICURATIONS

Boundary Conditions Clamped Pinned- Clamped- Clamped- Free-
- Free Pinned Pinned Clamped Free
£ 1,875 3.142 3.927 4,730 4,730
514 12,36 97.4 237.7 500.6 500.6
By 1.00 0.50 0.50 0.50 0.50
¢1(Aj) 1.000 1.000 0.957 1.000 1,000
J:¢1(A)dA 0.392 0.637 0.570 0.523 0,000
J1¢2(A)dA 0.250 0.500 0.439 D:387 0,250
01
¢§(Aj)/Iz¢§(A)dA 4,000 2,000 2,086 2,519 1.479
1.568 1.274 1.298 1,317 0,000

1 1
J 6 (A)dA/J 62 (A)da
01 0 1




TABLE 11

THEORETICAL RESONANT AMPLIFICATION FACTORS AND RESONANT

FREQUENCIES FOR CLAMPED-CLAMPED BEAM (a=1 = 0,317)

we . re Force Excitation Shaker Excitation
= A_ Peak 1 Peak 2 Amplification A
mt Q (s/al)“ Q (5/51)“ Peak 1 | Peak 2
ol a2 « 0311 - - 76,0 1,05 - 101
J052 - - 279 1409 - 37;:6
+083 Sl .66 7.5 1l.24 6,15 10755
o124 14,9 +80 2435 1461 18,7 3.56
1 156 26,1 .83 - - 33,0 -
a1 e D «031 - - 32,0 1,05 o 42,4
+ 052 - - 12,7 1407 - 16.8
.083 5142 .825 - - 645 -
.124 h [ [ .85 - - 14,6 -
154 1842 .87 - - 23 -
a1, & +031 - - 18,6 1,03 e 24,6
052 - - 97 101 - 12,8
.083 10,0 .91 - - 1257 -
e 124 16,6 «89 - - 21.0 -
<154 22,6 .89 - - 29,1 -
ol 15 031 14,8 1,01 - - 19,5 -
+0103 53,2 1,01 - - 7052 -
«0206 23,5 1.0l - - 3150 -
;0412 11,8 .99 - - 15,6 -
5 062 11,9 .93 - - 15,4 -
e ) L0102 41,0 1,0% - - 54,2 -
031 13,8 .99 - - 138t -
«072 17.3 + IL - - 2242 -
+154 39,2 .91 - - 51,0 -
e 2 2 2072 - - 15 Al - 42,5
+103 - - 1546 1,18 - 21,4
.134 359 <52 8.8 1,28 4,5 12,4
o 165 5169 .60 5.4 1:40 T2l 7.82
.206 9,5 .66 362 Lu61 1355 4,85
.268 16,2 @12 1.8 1,94 19,9 2:91
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TABLE II (CONT'D)

v e Force Excitation Shaker Excitation
& L Peak 1 Peak 2 Amplification A
ol
o) (‘é/EI)L+ Q (E/El)l+ Peak 1 | Peak 2
.l «D 072 - - 13,2 1,09 - 17,80
« 103 - - 6.9 1.16 - 950
.134 el .60 4,00 1,22 3.82 5.60
.165 4,35 ,66 2,61 1,30 5425 3.70
«268 10,3 .74 - - 1247 -
.206 6.4 1D - - T.82 -
saL0 13,2 s« 1B - - 16,40 -
sa 1 072 - - Tl 1,05 - 10.1
03 4,86 .99 - - 6.40 -
.134 4,99 .80 - - 6.25 -
.165 6,30 78 - - 71+85 -
«310 14,7 «81 - - 18.40 -
.2 1.5 ,0414 - - 11.8 1,03 - 15.7
.072 6.50 497 - - B8.52 -
«1.03 6.05 4«87 - - 1412 -
.136 T430 B3 - - 925 -
2 2 ,0414 970 14,01 - - 12,8 -
072 6,80 L91 - - 8,75 -
+ 103 Welar 12 85 - - 9«82 -
.134 9.70 .83 - - 12,20 -
«310 23.9 +85 - - 30.40 -
.4 s wdD3 1.76 21 29.0 1.13 1.86 39.5
s 155 2,46 L31 15,0 1,22 220 20.8
.206 3.41 ,39 9.25 1,33 3.80 13,2
S2i5.8 4,76 .43 6.19 1,46 5.40 9,00
s34l 6.45 .49 4,40 1,60 7580 6.70
+392 9.70 54 2.87 1.86 % e 4,60
.4 «9 %103 1.50 523 11l.8 1.13 1.60 16.0
s 105 180 33 6,30 1,32 2,07 8.75
«206 2,47 .41 287 l.dl 280 5.48
«258 3,20 .48 2,62 1,42 3:70 3.81
«310 4,06 ,52 1:91 1.56 4,75 2,85
+4 1.0 103 - - 6,20 1,09 - 8.40
%155 - - 3:.582 1:12 - 4,76
.206 2,92 .58 - - 3.47 -
.258 3.74 .60 - - 4,47 -
« 340 4,65 62 - - 5.55 -




TABLE II(CONT'D)

we re Force Excitation Shaker Excitation
L A Peak 1 Peak 2 Amplification A
mh Q (g/gl)“ Q (5/51)“ Peak 1 Peak 2
.4 1.5 ,072 - - 6,95 1,05 - 9,30
+103 4,55 1,03 - - 6,05 -
+ 155 3526 « 19 o - 4,10 -
.206 4,02 .66 - - 4,88 -
4 2 .072 506 101 - - 1420 -
+103 4,00 93 - - 5.10 -
+ 155 4,08 o 12 - - 4,95 -
.206 520 .68 - - 6430 -
w310 7+85 .68 - - 9455 -
.8 o2 2206 2,24 206 164 126 2,38 23.0
.290 3.14 247 10,1 1,38 3:387 14.5
+310 D9 .268 8,60 1.42 3.90 12,4
+352 4,03 w289 1«20 151 4,33 10.6
.413 4,85 330 5,65 1,61 5436 8.60
.454 5450 «330 4,90 1,68 6+10 152
+«D36 7+.10 o310 381 1385 1590 6,07
.8 «> 5206 BER A, «186 6,20 1,26 1.80 84+70
«290 2,14 «269 3,89 1,38 2,30 5.60
.310 2427 + 288 .3.50 1.42 2.47 5.10
«352 2.54 «309 2,92 1,49 2418 4,30
.413 3.00 330 2531 1561 3532 3.50
.454 333 e30l: 2401 1467 3.70 307
536 4,05 «392 1558 1,84 4,55 2:.52
<8 1 .206 1.74 289 3521 1522 1.90 4,47
.290 2520 2350 2,05 1.30 2,45 2.90
.310 2.32 «350 1,86 1,33 2,59 2,65
« 352 2,58 «391 157 1.38 2,90 2425
.413 3.03 .412 1,26 1.44 3,45 1,81
<8 bl 103 - - 5.21 1.09 - 702
+165 2,44 «99 - - 3420 -
.206 2,05 2392 2:29 111 2,32 3.10
290 2,65 .435 - - 3.03 -
5352 3.16 .455 - - 3.62 -
413 3,72 A75 = - 4,30 -
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TABLE II (CONT'D)

I‘e Force Excitation Shaker Excitation
N Peak 1 Peak 2 Amplification A
mh Q (a/gl)‘* Q (5/&1)'+ Peak 1 | Peak 2
.103 - - 4,02 1,05 - Bisa D
.165 2,44 .99 - - 3.20 -
.206 2.47 <475 - - 2,84 -
.290 3.+25 s 475 - - 3,75 -
«310 3.46 .495 - - 4,02 -
«:352 3.90 .497 - - 4,52 -
.413 4,55 .497 ~ - 5.28 -
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THEORETICAL VALUES OF PARAMETERS FCR OPTIMAL

TABLE

II1

TUNINC

OF DAMPERS ON CANTILEVER BEAM UNDEP FORCE EXCITATION

Less i |
Pactor Appreoximate Theory Exact Theory .

e e

B Ve Ns Ve v Ve s P v
e e

. 0,10 0,170 0,088 ,94 0,08 0,165 0,073 .96
. 0.204 0,083 .91 0.150 0,065 «90
0.135 0,062 .79 0.110 04,055 .83

. 0,076 0,040 ,63 0,070 0,032 63
. 0,20 0,180 0,161 ,920 0,20 0,185 0,161 .90
. 0,270 0,150 487 - - -
. 0,250 0,112 ,75 - - -
. 0,150 0,068 ,58 - - =
. 0.40 0,190 0,290 .85 0,40 0,190 0,272 s 83
. 0380 05252 80 0+375 0,240 «18
. 0,420 0,200 ,71 0.410 0.191 .69
25 0,285 0,124 56 0,290 0,136 58
. 0.60 0,190 0.372 ,79 1,60 0.190 0.580 .60
. 05390° 0%315 373 0,435 0.520 e D
. 0,480 0,237 ,63 0,610 0,365 .68
. 0,410 0,150 ,50 6.680 0227 «38
. 0.80 0,210 0,445 ,75 0,80 0.190 0,425 il
. 0.400 0,382 ,69 0,405 0,366 «68
. 0.510 0,282 ,60 - - =
. 0:505 0,176 47 0.470 0,178 47
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TABLE IV

THEORETICAL VALUES OF PARAMETERS FOR OPTIMAL TUNING OF
DAMPERS ON CLAMPED-CLAMPED BEAM UNDER SHAKER EXCITATION

Loss Approximate Theory Exact Theory
Factor Jli Te
N LI"e s I1e Lpe qJe Mg re Ll‘e
0.2 0.10 0.150 0.090 « 950 0.10 0.165 0.091 + 955
0.5 0. 210 0.080 . 895 0. 202 0. 080 . 895
1.0 0.135 o - 0..125 0. 065 . 868
1.5 0.095 - - 0.095 0. 050 o 10T
2:0 0.080 -- -~ 0.083 0.038 .616
0.2 10,20 0.185 0. 167 +'9.17 0. 25 0. 180 0. 205 . 910
0.5 0.310 0.148 . 862 0.321 0., 170 . 830
1::0 0. 280 0.116 . 760 0. 293 0. 140 . 750
1.5 0. 200 0.088 . 663 0. 230 0.115 . 678
2.0 0.160 0.070 . 590 0. 195 0. 085 . 582
0.2 0.40 0.190 0. 290 . 856 0. 50 0. 187 0. 360 . 850
0.5 0. 380 0. 250 . 790 0. 374 0. 300 . 775
1.0 0.430 0.190 . 670 0. 460 0. 240 . 692
145 0. 400 0. 160 D32 0.416 0. 190 .616
2::0 0. 350 0:111 . 528 0. 378 0. 150 . 550
0.2 0.80 0.200 0.490 . 781 1. 00 0.188 0. 610 « 782
0.5 0.420 0.410 s L7 0.403 0. 480 . 692
1.0 - - -- 0. 580 0: 350 . 590
1.5 - - - 0. 600 0.:.270 . 520
2.0 0. 550 0. 200 . 500 0. 600 0. 220 . 469
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Figure 23, CGCraph of Fundamental Frequency wy of Cantilever Beam

Against Length L (Dead Weight of 22 gm at T'ree Fnd)
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